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One of the main factors affecting the dynamics of homogeneous solution type pulse 
reactors is the formation of gas bubbles on the fission-fragment tracks [i, 2]. 
The behavior of the reactor depends very considerably on the size (10 -5 cm) and 
growth rate of these bubbles [2], and it is, accordingly, a very important matter 
to study these properties. One convenient means of doing this lies in the acoustic 
method. The behavior of gas bubbles in the field of a sound wave has been studied 
in a large number of papers and reviews [3, 4]. In this paper we shall see the 
approximation of a sound wave of small amplitude to consider the dissipation of 
sound-wave energy in a gas bubble, at the same time allowing for inertia, surface 
tension, viscosity, heat transfer, arid the diffusion of gas through the surface 
of the bubble. 

As in the majority of the papers already indicated, we shall, in general, consider sound 
waves in which the wavelength is much greater than the dimensions of the bubble ~ >> R 
(i.e., over a distance equal to the dimensions of the bubble, the density and pressure may 
be regarded as constant); we shall assume that the changes in gas pressure inside the bubble 
follow the changes in wall pressure almost immediately. This corresponds to the case in 
which the velocity of the bubble boundary is much smaller than the velocity of sound in the 
gas in question. 

It was indicated earlier [5] that, in order to describe the concentration of the dis- ! 
solved gas at the moving boundary of a spherical gas bubble on the approximation of a thin 
diffusion boundary layer (Z << R), the following expression might be used: 

iR~(x)(~)n(~) c ( t ) - - e o - - -  ~ l ( t ) - -  (D / / ~  I t ~itZ dx, (1) 

this having been obtained in [6] for the temperature at a moving spherical boundary. Here 
c and co are the concentrations of the gas dissolved in the liquid close to the side of the 
bubble and a long way from the latter, respectively, D is the diffusion coefficient of the 
gas in the liquid, R is the radius of the bubble, r is the radial coordinate in a spherical 
coordinate system, the center of the system coinciding with the center of the bubble, t is 
the time, and n represents the sources of dissolved gas in unit volume of the liquid. 

The approximate thickness of the boundary diffusion layer over which the fall in the 
concentration of the dissolved gas takes place is determined by the relation IN(Dt)I/2 ; 
this gives the condition for the frequencies of the sound waves falling on the bubble at 
which Eq. (i) is valid: 

o >> D / R  ~. (2)  

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 66-74, July-August, 1975. Original article submitted October 17, 1974. 

�9 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording 
or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00. 

528 



Regarding the gas in the bubble as ideal we may write its pressure 

p2=Fp2T2, (3) 

where F is the universal gas constant referred to ! g-mole of the particular, T2 is the gas 
temperature in the bubble and P2 is the gas density. 

At the bubble boundary the concentration gradient of the gas dissolved in the liquid may 
be written [5] 

(4) 

The equation of motion for the spherical boundary of the bubble in the liquid takes the 
form [7, 8] 

2"z 3 "2 # 
P 2 = P t - F  ~4-TOtR + P l R / ~ + 4 9 d ~ .  (5) 

Here p: is the pressure in the liquid at the boundary of the bubble; ~ is the surface tension; 
v is the kinematic viscosity of the liquid and 91 is its density. 

The pressure in the liquid is determined by the sum of the equilibrium pressure Pot, 
the pressure of the monochromatic traveling sound wave Ap01 exp {i(kr -- d)}, and the pressure 
of the scattered spherical wave having its center in the bubble (Apdr) exp {i(kr-- ~t)} [9, I0] ; 
the pressure at the bubble boundary may be written 

pl=pol+Aple -~et, 

where Aplis determined by means of an approximation analogous to that used in [9]: 

Apt : -  hpot  + A p  ~/t~o +ikAp~. 

Here Ro is the equilibrium radius of the gas bubble. 

Let us consider a bubble for which the radius averaged over the period of the sound 
wave remains constant under steady oscillation conditions. Physically, this corresponds to 
the case in which the dissolved gas concentrations (averaged over the period) at the actual 
surface of the bubble is equal to the concentration a long way from the latter. 

When the bubble oscillates steadily in the field of the sound wave, the time dependence 
of its radius, pressure, and density, and the temperature of the surrounding liquid may be 
expressed in the form 

/(t)--fo+Afe-{et, (6 )  

where A/<< f, while for the temperature we have To~=To~=T o (To is the equilibrium, temperature). 

Using (3)-(5) with due allowance for (6) and neglecting quantities of higher orders of 
smallness than A/L Ap, AT , we obtain 

\~r]l: 3Dt, 7~ i~ - ~ Pc, t ~ ;3bt,,j ' ~ t - : - l ~ ~ 1 7 6  49otVi~,~j" (7 )  

Taking account of (6) and confining attention to terms of the first order of smallness, 
let us express (5) in the form 

2~ =~l~e_~o,~) _(o~f)otRoAl{e_ico, v_iLi~ovgol_~o e_~co~" /9 2 (t) = Pol -i-&lP,e -i~ JIG ( i  - -  W , (8) 
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iO L For a stationary bubble, according to (5) potT~/Bo--po, " . 
(8) and using Henry's law for the solubility of the gas c=Bp~ 
factor), we find 

Substituting the latter in 
(B is a proportionality 

2~ 
c ( t ) - - c  o = a A p l - - ~ o o 2 A R -  (-02~Ol~OA/~--i~(OVpolAll-~]}e -io~t. (9) 

Here  c o = B p o ~ .  

The change in the density of the liquid under the influence of the sound wave is ex- 
pressed in terms of the change in pressure [Ii] Apl= Ap/u~ , where ulis the velocity of sound 
in the liquid. The amount of gas dissolved in i g of liquid a long way from the bubble c~, 
remains constant in the field of the sound wave. The amount of gas dissolved in unit volume 
of liquid is co=c~p0 ~ where Co+Ac(r) exp (--i~t) is the concentration of dissolved gas in the 
equilibrium state; Ac (r) = (c~/u~) {AP01 + (Ap/r) exp (~kr)} . The change in the concentration of 
dissolved gas under the influence of the sound wave may be formally expressed as the action 
due to the sources 

~=Ac(r)  exp ( - - i ( o t ) .  (10)  

S i n c e  t h e  c o n d i t i o n  l << R i s  s a t i s f i e d  by  t h e  t h i c k n e s s  o f  t h e  d i f f u s i o n  l a y e r  a d j a c e n t  t o  
the bubble over which the concentration of the dissolved gas falls, we may put 

Ac := AP,,1 i- -~o ' i- ikAp.~ =- co~Apl /u~  ( l l )  

within this layer (without allowing for any change in concentration due to the diffusion of 
the gas). 

Substituting (7), (i0), and (ii) into (i) with due allowance for (6) and confining 
attention to terms of the first order of smallness, for the difference c(t) -- Ca we obtain an 
equation in terms of the Fresnel integrals Sl(~t)'/~J,Cl((ot)J2], which, subject to the condition 
(0)t)~/2~bl , i.e., steady oscillation conditions, tends to a limit of 1/2. Using the expres- 
sion so obtained for the difference c(t) -- ca together with Eq. (9) we obtain 

2~B 
B A  p j  - -  ~ A R  - -  <o2Bpot R o A  R - -  i~<,)Bvp. 1 ~ = tt~ 

:=::Ac-; i (20')L2 { h'n[ 2~z] 

o 2 , ~ } - -  r -:- 3po,AB - i  4 ~  AB - -  i 4o~p . t vA l~  (t ; i). 

If we use E to denote the internal energy of the gas in the bubble, 
heat liberated in a bubble of volume V2we obtain [12] 

(12) 

for the amount of 

dQ poV~Dv.~ - . l  To 
aT:=  - " ~  ' " \ ~ ) v - g T '  

where Cvz is the specific heat of the gas at constant volume. The amount of heat passing 
into the liquid through the surface of the bubble in unit time is 

d--f = ~-r ~' 

where %1 is the thermal conductivity of the liquid~ Equating the two latter relationships 
with due allowance for the equations V~=-(d~/3)B~; F2==4~R2R and confining attention to terms 
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of the first order of smallness, we obtain 

As in [13] we shall consider that the temperature at the bubble boundary equals the 
temperature inside the bubble T~ . The temperature of the moving spherical bubble boundary 
is described by Eq. (i) [6, 13] on the assumption of a thin thermal boundary layer (l << R 
thick), except that instead of the concentrations c(t), co and the concentration gradient 
(Oc/Or) we now have to put the temperature T~, T o , and the gradient (OT/Or)u, respectively, 
while the diffusion coefficient D must be replaced by the thermal diffusivity l~ �9 We may 
derive a frequency limitation analogous to (2) for which the foregoing considerations are 
valid 

o, ~ 7..~ ,'t7o 2 * 

The change taking place in the temperature of the liquid under the influence of the sound 
wave, like the concentration of the dissolved gas, may be expressed as the action due to 
the heat sources, i.e., N(t)=AT~exp (--i~t) . In this case the temperature a long way from 
the bubble may be regarded as constant and equal to the equilibrium temperature T 0. Since 
the condition X >> R is satisfied by the sound-wave length over the thermal boundary layer 
of thickness ~ << R in which the temperature drop takes place N(t) may be regarded as a 
uniformly distributed quantity, depending solely on the time. Proceeding as in the deter- 
mination of c(t) -- co, we find 

, , O p , ,  - -  (2~ C -~/{ A~<, ~-3T0~.(~-T:)v ~ R ) ( l  /,), A I ' . , - - A T  1 -  ~ [vo: v'z o , 

for (o t ) l i2>~  1 , whence 

A T., == ( r l  + i i ' : ) A  T~ - -  (A~ - -  iA~) ,An,  ( 1 3 )  

where 

f "> "~" ' . t~l, o.,_Cv~Boi ; Ft  = ~-ioOt~t 6(2(oZ1)1 '~" o 

I'., = ~ (2o, z1)t 2 ;tllrio2Cr2Ro; 

lop.,\ 

:= = ( -  7.1) )-tT0 ~ v' 

6 .= 06:.7 -i- (2o)Zl) t'~ X19o2Cv2Bo - ' : 4r 

The q u a n t i t y  :s may b e  e x p r e s s e d  i n  t e r m s  o f  Ap~ its]: ATt=(To/Cp,)(OvffOT1)php, w h e r e  Cpl 
i s  t h e  s p e c i f i c  h e a t  o f  t h e  l i q u i d  a t  c o n s t a n t  p r e s s u r e ,  a n d  v L i s  t h e  s p e c i f i c  v o l u m e  o f  
t h e  l i q u i d .  

Substituting (13) into (12) with due allowance for (i!), we obtain 

He r e 

AI: :::(G - -  itt),5p~. 

G --a~-:-bd H : =  bg--ad. 
g2+d ~' gZ-j d ~, 

:= 6D (,B - = , r  ) -!- (2<,,),,2 - , ,  (r l  + r /[p01R0 + ; 

(14) 
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,2 . } 

b = (2~o)I/~ B (Y1 - -  F 2 ) [ P 0 i R 0  - 2a]  .; 
P 

I '  5 ") 4 d == - -  24(oBDi/2FTovpotBo - �9 ~2w )t _ p o l B  o _ 4 (2~o3)t/z pot~;B~ - -  

- -  (2(o) '/2 -~o {~"o ~-~t ~ A~) [p,,~R o - :- 2~1 -~ 3 p o l R  o -~ 4(z ; 

g = 12BDW~-aFTo _{~. 6o)~BDW'FTopo~B~ -- 

4- (2(o5)'/~ p o l R ~  ~- 4 ~~ ~''-~ ,' vR.~ 
�9 ~ k ~ ] ' ~ " 0 1  '~ '  

Calculations show that the amplitude of the vibrations of the bubble undergoes resonance 
at a certain frequency. The greater the radius of the bubble, the narrower is the frequency 
range of the resonance. 

By way of example, Fig. 1 shows the frequency dependence of G and H in the resonance 
region for a gas bubble (molecular hydrogen) with a radius of R =~0 -4 cm appearing in water 
at p0F=i atm and To = 293~ 

No explicit expression can be obtained for the resonance frequency mo in view of the 
rather complicated relationships existing for G, H, F~, F~. A~, Ae and 6 in terms of the fre- 
quency ~ of the external sound field and the radius of the bubble. However, the difference 
between the results obtained on the basis of such calculations and the well-known classical 
expression [9, i0] 

(o,, := It-~o - -  ~ 

is reasonably small and only becomes appreciable in the range R N I0-:' cm. For 7~ iO -~ 
cm the discrepancy is 8%, for B=I0 -4 cm, 13%, and for R: ~()-~ cm, 60% 

In view of the foregoing restrictions regarding the wavelength and the thickness of the 
thermal and diffusion layers, the results obtained for the vibration amplitude of the bubble 
apply simply to cases in which the frequencies satisfy the inequalities ~<<2~i/R0; ~>> 
D/R~; ~>> %1/R2o Since we always have %1 >>D , the strict condition for the frequency at 
which the equations in question are valid may be written 

7.1/Ro << co << 2nu, IR  o. (15) 

For example, in the case of a hydrogen bubble with a radius of R=i0 -~ cm, we must satisfy 
10v<<~<<i011, while for R==i0 -3 cm 10~<<~<<i09. However, calculations show that, in 
all practical cases, in the region of the lower limit of (15) the F I in (13) is close to 
unity, while the remaining terms are negligible. Thus even in the region of the lower 
boundary AT2~_~ATI , which corresponds to the isothermal approximation. Since the heat 
capacity of unit volume of liquid is much greater than that of unit volume of gas, while 
the temperature fluctuations in the bubble under the influence of a sound wave of small 
amplitude are negligible (AT2<<T0), the equation T2- T I means (physically) that in the re- 
gion of fairly low frequencies almost all the heat liberated in the bubble during its com- 
pression is absorbed in the boundary layer. This result may be predicted on the basis of 
the actual form of the expression for F I, F 2, and A, ,A2, since as the frequency diminishes FI 
tends to unity and Fu to zero; the terms containing A~ and :\~, both diminish. 

/,) n 
Thus in solving Eq. (12) in the frequency range between 0)~ %~,R~ and (,)~D/Rg 

we may use the approximation AT~=AT~ , and since this approximation is obtained automatical- 
ly from Eq. (15) all the results will be valid for the frequencies 

D/Rg << (o << . n u l . ' R .  

(for H I() -'~ cm and /~ I0 -:~ cm we have i(F' << (,)<<I()" and I(I << 0) << I() ~' , respectively). 
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Fig. 2 

It should be noted that the terms allowing for gas diffusion 
in the equations for a, d, and g make an insignificant contribu- 
tion at high frequencies, while the role of the terms allowing 
for inertial forces and viscosity increases with rising frequency. 
In the same way, a phase shift develops in the temperature fluc- 
tuations of the bubble, which also follows immediately from (13). 

The temperature distribution inside a pulsating bubble was 
considered in [14] (the temperature on the surface of the bubble 
was assumed constant), and here also a phase shift was observed 
between the oscillations of the bubble boundary and the oscilla- 
tions of the thermal flux through this boundary. 

It is convenient to define the plane monochromatic traveling 
wave in terms of the potential ~0=A0exp {i(kr-- o)t)l , and the 
scattered spherical wave correspondingly [i0, ii] in terms of 
~ - - ( A i r )  exp { i ( k r - -  o)t)}. The e x c e s s  p r e s s u r e  c r e a t e d  by t h e  sound 
wave in the liquid and the velocity of the liquid in the sound 
wave are described by the expressions Ap(t)----p~(OT/Ot);W==vT. 

The radial velocity component should remain continuous at r=R [9, i0], from which [using (6) 
and (14) for R(t) and expanding exp(ikr) in series in accordance with the condition % >> R] 
we obtain 

(A A) 
- -  ~n~ -!- u~7o"" " (1 + .  i kR . )  . . . . .  i(o (G - -  i l l )  Ap~ 

to an accuracy of terms of the second order of smallness. 

Defining Ap~ in terms of ~]} t|r0%~ ~ and substituting this into the preceding relation- 
ship, we finally obtain 

. , 2  G . - - i t !  
A~=-o)"pol~o - ~ 7 ~  A o, (16) 

where 

, 2 oy_,kpolB'~H,  k2tr q := l - i  0) polICloG i 

h = o~29oxRoH - -  r 

The f l o w  o f  sound e n e r g y  i s  r e d u c e d  a f t e r  s t r i k i n g  t h e  b u b b l e ,  on a c c o u n t  o f  b o t h  s c a t -  
tering and absorption. The total attenuation cross section may be determined in the follow- 
ing way [9]: 

o~= E ! I  o, ( i 7 )  

where Io is the intensity of the sound in the wave falling on the bubble, E is the average 
energy absorbed in the bubble per unit time, equal to the work done per unit time by the 
sound wave striking the bubble. This includes the energy both dissipated and absorbed in 
the bubble. The average work executed on the bubble in unit time when its volumes alters 
is 

E 2 Re/APol( t)  _ 

Defining Ap0,(t)=:--9o,(dqr,'dl) and expressing V._, in terms of (14) we obtain 

= : ') 3 '~ ') ~ ' )  - -  E E 2 ~ o J ' t ) ~ ] l  I~:~ot" / - /  !- ( . ) - [ )o1~o .h ((:=' I I  "~) - -  2 q G / [  i-/,'/-~.q ((;2 ~_ 1[--,) {_ 2 k l l . h ( l i l  
i q'~ { h"- j "  

Remembering that the velocity of the liquid in the incident wave is equal to W, :u 
we have 

I,, : - -  - 7 ,  po,u, fX~ oi- =.= - - o  .o-IA,Y. 
_ 2 1 1 1  ~ t i t  
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Substituting the last two equations in (17) we find 

z " { , ,, ( / ,  k/~,,q) (("- - - / t  2) - -  2 (q - -  l~/~oh) r ] 
cr / . . . .  ~ / ~ o ) [ ) o l u  1 t I  - i  c o ' [ ) o l R o  q.2_i_ h ~ J" 

The scattering cross section o~= Ja [9]. On using (16) we thus obtain 

z i, (;2 r -  I1'~ 
o~ .... ~nco P o l B o  q2 ~ h~ " 

The sound absorption cross section o a is determined by the difference ~ -- aa. 

Using the foregoing equations, we calculated the attenuation and scattering cross sec- 
tions for gas bubbles of different radii in water at P01=l atm and To = 293"K. As the gas 
component we took molecular hydrogen. The results are presented in Fig. 2. The pairs of 
curves I-IV correspond in sequential order to bubble radii of 10 -3 - 10 -5 cm. The upper 
curve in each pair reproduces the total attenuation cross Section, and the lower curve 
represents the scattering component. We see from Fig. 2 that the cross sections have a 
sharp peak. The width of the peak in the cross sections, and also the width of the resonance 
in the vibrations of the bubble, increase as the bubble becomes smaller. 

The existence of peaks in the scattering and absorPtion cross sections offers extensive 
possibilities for the experimental analysis of the dynamics of gas bubbles, and, in particu- 
lar, the mechanism underlying the boiling of homogeneous water pulse reactors, since it 
enables bubbles of a specific diameter to be separated out by reference to the sound-absorp- 
tion maximum, so that their behavior may be studied as a function of time. 
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